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i Department of Physics, Faculty of Science, Kyoto University, Kyoto, 606, Japan 
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Abstract. The direct algebraic method for constructing travelling wave solutions of nonlinear 
evolution and wave equations has been generalized and systematized. The class of solitary 
wave solutions is extended to analytic (rather than rational) functions of the real exponential 
solutions of the linearized equation. Expanding the solution in an infinite series in these 
real exponentials, an exact solution of the nonlinear PDE is obtained, whenever the series 
can be summed. Methods for solving the nonlinear recursion relation for the coefficients 
of the series and for summing the series in closed form are discussed. The algorithm is 
now suited to solving nonlinear equations by any symbolic manipulation program. This 
direct method is illustrated by constructing exact solutions of a generalized K ~ V  equation, 
the Kuramoto-Sivashinski equation and a generalized Fisher equation. 

1. Introduction 

Several methods of obtaining solitary wave solutions have been developed since the 
inverse scattering technique (IST) was established by Gardner er al (1967). The search 
for exact solutions of nonlinear PDE outside the range of hyperbolic theory became 
more and more attractive due to the availability of symbolic manipulation programs. 
Indeed, MACSYMA, REDUCE, MATHEMATICA, SCRATCHPAD, DERIVE and the like allow 
one to perform the tedious algebra common to most of the direct methods. 

In this paper we are concerned with generating particular solutions of nonlinear 
evolution and wave equations with constant coefficients by a direct series method. A 
review of such methods may be found in the paper by Fokas and Ablowitz (1983). 

The original idea behind our method goes back to Hirota (1980), who systematically 
solved large classes of evolution and wave equations by a perturbation approach. 
Considering the Pad6 approximant in a power series expansion, Hirota found that it 
is convenient to transform the original equation into bilinear form for a novel bilinear 
differential operator. The bilinear equation was then solved by an iteration procedure 
up to any chosen order, eventually leading to multiple solitary wave solutions ( N  
solitons). Wadati and Sawada ( 1980) did not require Hirota’s preliminary transforma- 
tions and their ‘trace method’ allows one to represent the formal series for the N-soliton 
solution in an elegant closed form. However, the above investigators did not pay much 
attention to the relation between the solution and the exponentials occurring in the 
expansion. 

In 1978, two papers appeared independently, in which solutions of nonlinear 
evolution equations were constructed from travelling wave solutions of the linear part 
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of the equation. In the first paper, Rosales (1978) explored the idea of summing the 
infinite series either directly or in terms of the inverses of operators in an appropriate 
space. His aim was to construct multi-soliton solutions by a purely formal iteration 
procedure starting from all the discrete exponential and continuous (integral) solutions 
of the linear part of the equation. In the second paper, Korpel (1978) looked at the 
problem from a more physical point of view. He realized that the final solution of the 
nonlinear PDE is a rational function of the real exponential solution(s) of the linear 
part of the equation. Intrigued and motivated by the simple nature of the final solution, 
Korpel wanted to understand how the nonlinearity mediates the coupling between 
these real exponential waves. 

Once that mechanism of mixing of elementary exponential solutions due to non- 
linearity was understood, Hereman et a1 (1985, 1986) established a straightforward 
algorithm for constructing solitary wave solutions based on Korpel’s original idea. 
This direct algebraic method has since been used to construct solitary wave solutions 
of coupled systems (Hereman 1988, 1990b, c) and of discrete systems such as the Toda 
lattice (Dash and Panigraphi 1990). Implicit solutions, e.g. of the Harry Dym equation, 
have also been constructed by a straightforward generalization of the method (Hereman 
et al 1989, Banerjee et al 1990). Recently, Coffey (1990a) also generalized the Hereman 
et al method to recover an analytic closed form solution of a fifth-degree Kdv-like 
equation and to solve a differential-integral equation exactly. 

Seeking travelling wave solutions, one can immediately reduce the nonlinear PDE 

into a nonlinear ODE and then use basic ideas from the geometrical theory of ODE 

(Arnold 1983). In particular, PainlevC analysis (Ince 1956) helps in classifying the 
possible singularities of the solution of the ODE. Partly based on this type of singularity 
analysis, Takaoka (1989) solved the Kdv equation with an extra fifth-order dispersion 
term. Restricting himself to hyperbolic-type solutions, Takaoka used Mittag-Lefler’s 
theorem and the symmetry of the equation to achieve his goal. 

In the direct algebraic method the solution is represented as a series in the real 
exponential solutions of the linearized equation. The coefficients a, of this series must 
satisfy a highly nonlinear recursion relation which may be complicated to solve. 
Furthermore, once the general solution of the recursion relation is obtained, the series 
has to be summed to arrive at a closed-form solution. The latter step can always be 
carried out provided the general solution a, of the recursion relation is a polynomial 
in n. As a consequence, the exact solution of the given nonlinear PDE is a rational 
function of real exponentials. 

If PainlevC analysis indicates the existence of analytic (rather than rational) sol- 
utions, then it is advantageous to transform the equation immediately into one that 
admits purely rational solutions. Regarding the solution of the recursion relations, one 
first determines the degree of the polynomial a, in n and one consequently calculates 
the unknown coefficients. This straightforward but lengthy calculation is well suited 
for any symbolic manipulation program such as MACSYMA. The summation of the 
infinite series is also straightforward, as will become clear in the next section, where 
we present all the details of the algorithm. 

To demonstrate that each step is simple and easy to program, the method is 
exemplified in sections 3, 4 and 5 .  We show in section 3 how analytic solutions of a 
generalized Kdv (gKdv) equation can be obtained. In that section we pay special 
attention to the transformation of the nonlinear equation. In section 4, we focus on 
the solution of the recursion relation for the Kuramoto-Sivashinski ( KS) equation. 
This case is particularly interesting since it is not obvious what the exponential solutions 
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of the linear part of the KS are. Combining the major features of the generalized 
method, in section 5 we solve the generalized Fisher ( g ~ )  equation. Finally, in section 
6 we briefly discuss further possible generalizations of the present method, we make 
some remarks and draw some conclusions. 

2. The improved algorithm 

In this section we discuss the improvements of the algorithm, due to Hereman et ai 
(1985, 1986) and Hereman (1988), for the construction of solitary wave solutions of 
nonlinear PDE. To keep this paper self-contained we will briefly review all the steps 
of the method. Since the details for the unchanged steps may be found in the key 
reference by Hereman et a1 (1986), we will focus on the major improvements in steps 
d and f and in particular in steps h and i. 

Step a. Given a nonlinear PDE, with constant coefficients, 

9[a, ,  a,, W]U = 0 

where %[a,, a,, U-] is a nonlinear operator and u is a function of space x and time t, 
we seek travelling wave solutions. Therefore we introduce a travelling frame of reference 
defined by the new variable 6 = x - ut. The given PDE (1) transforms into a nonlinear 
ODE for +([) = u ( x ,  t ) .  The unknown velocity U of the travelling wave is supposed to 
be time and space independent. If (1) has a transcendental nonlinearity, e.g. the 
sine-Gordon equation, then one has to carry out a suitable transformation to remove 
the transcendental terms (Hereman et a1 1986, Hereman 1988). 

Step 6. The resulting ODE is integrated as many times as possible until it becomes an 
integro-differential equation. Sometimes it is advantageous to multiply the equation 
by 4c and integrate again. These integrations are not essential and their number varies 
from example to example. Evolution equations can be integrated at least once; wave 
equations at least twice. 

Step c. In general, the solution 4 may converge to some non-zero constant C as 6 + fa, 
whereas all its derivatives vanish at infinity. For convenience, a change of the dependent 
variables, according to 

( # l = C + $  (2) 

assures that the solution 4 and its derivatives vanishes at 5 = *CO. The constant C will 
be determined in step i. This is in agreement with the series expansion later used in 
step g. Indeed, the exponential solutions of the linear part of the equation also approach 
zero at 5 = *CO.  Should it be appropriate, the equation for 4 may be integrated again, 
but without loss of generality, integration constants may now be set equal to zero. 

Step d. At this point, (PainlevC) singularity analysis may indicate what to do next. A 
brief discussion of PainlevC analysis may be found in Hereman and Van den Bulck 
(1988) and Hereman and Angenent (1989), where also a MACSYMA program for the 
PainlevC test is presented. For our purpose, it suffices to quickly calculate the leading 
singularity in the solution. Therefore, we substitute 4 - [-” into the equation. Balancing 
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the most singular terms determines p .  If p is not a (positive) integer but a rational 
number n , / m , ,  then one carries out one more transformation: 

A suitable choice of I ,  guarantees that the resulting ODE is a polynomial in 6 and all 
its derivatives. The solution 6 is a rational function in the real exponential solutions 
of the linearized equation. As a consequence, the coefficients a, in the series expansion 
in step h will be of polynomial type in n. This will _become clear through the examples 
in sections 3, 4 and 5 .  Anyway, the equation for 4 remains to be solved. 

Step e. Before carrying on one may want to perform the PainlevC test for the equation 
in 4. If the equation passes the test one continues and hopes for a simple exact 
closed-form solution to exist. If the equation fails the test, one may generalize the 
search to include implicit solutions (Hereman et a1 1989, Banerjee et al 1990), which 
are out of the scope of this paper. 

Step$ The main task is to integrate the equation for d. Motivated by the physics of 
generation of harmonics and wave mixing, we seek a nonlinear solution built up with 
decaying real exponentials, g = exp(-K(u)t) ,  which are solutions of the linear part 
of the equation. If the equation has no linear part, one requires the exponentials to 
satisfy all the lowest-degree terms. This does not mean that the values for K ( v )  can 
always be readily determined from the polynomialf( K,  U )  = 0, obtained by substituting 
g into the linearized equation. This causes no trouble, we just continue with unknown 
K ( u ) .  However, the constraint f ( K ,  U )  = O  will allow us to partially simplify the 
recursion relation in the next step. For convenience, one can also use this relation to 
eliminate U or the highest-degree term in K ( v ) .  This often allows one to rescale some 
coefficients in the nonlinear equation for 6. The example in section 4 will illuminate 
this procedure. 

Step g.  We expand 4 in a power series 

lo=1,2 ,3  , . . .  . (3) 6 = & l / l o m o  

x 

d =  c a d  
n = l  

(4) 

and we substitute this expansion into the full nonlinear equation. Next, we rearrange 
the sums by using Cauchy's rule for multiple series (Hereman et a1 1986), and we 
equate the coefficient of g",  so we obtain a nonlinear recursion relation for the 
coefficients a , .  An expansion for the solution like (4) can be motivated as follows: 
one tries to write the solution of the nonlinear ODE first as a linear approximation and 
then adds successive nonlinear corrections of higher and higher order to obtain the 
complete solution. 

Step h. The actual solution of this recursion relation is carried out in two steps. First, 
expecting a, to be a polynomial in n, we determine its degree. Since 6 behaves like 
5 - n D ' o  (see step d),  one may assume a, to have degree 6 = Iono - 1. Details on how to 
accurately calculate the degree 6 are given in (Hereman er a1 1986). Hence 

6 

a, = Ajn'. 
j=O 

Replacing a, by ( 5 )  in the recursion relation our new task is the calculation of the 
constant coefficients Aj. 
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Step i. The problem is now completely reduced to an algebraic one. The remaining 
unknowns, being the coefficients A J ,  the values for K and v, and possibly C and some 
integration constants, will follow from solving a nonlinear system. The equations of 
that system are obtained by setting to zero the coefficients of the different powers of 
n. To do so, we need to calculate the various sums of powers of integers (Spiegel 
1968), i.e. 

n 

s k =  i k  k = 0 , 1 , 2 , .  . . . 
i = l  

Formulae for such sums are straightforwardly calculated by hand or easily computed 
with any symbolic manipulation package. Their expressions also follow from the 
recursion relation (Spiegel 1968) 

with So = n. For example, SI = ( n  + l ) n / 2 ,  S2 = n (  n + 1)(2n + 1)/6, etc. Particularly, the 
examples in sections 3, 4 and 5 will be indicative for this step. 

Stepj.  To find the closed-form for 6 we first combine (4) with ( 5 ) ,  thus 

with 
a 

e ( g ) =  njg" j = o ,  1,2  , . . U  * 

n = 1  
( 9 )  

Considering the relation 

F , + I k )  = g F , ! ( g )  j = O ,  1 ,  2 , .  . . (10 )  

one can construct any F , ( g )  starting from F o ( g )  = g / (  1 - g ) .  In particular, F , ( g )  = 
g / ( l  - d2, F * ( g j  = d1-C g ) / ( l -  d 3 ,  etc. 

Step k. All that remains to be done is to return to the original variables to obtain the 
desired travelling wave solution. Retracing the above steps, and inverting the transfor- 
mations (from 6 to 4 and from 6 to x and t j ,  the exact closed-form solution of ( 1 )  
is-at least in principle-obtained. 

The process described above may not always work, of course, but it certainly works 
well for a very large class of very interesting nonlinear evolution and wave equations. 
Some of these with their solutions are brought together in a large table by Hereman 
et a1 (1986). 

3. Example 1: A generalized K d v  equation 

3.1. General treatment 

As an example we consider a g K d v  equation, 

U, + ( a  + bUC)UCU, + du,,, = 0 
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where a, 6, c and d are real constants. This equation contains several interesting and 
well studied cases dealt with in subsection 3.2. For c = 1 it is a combined KdV-mKdV 
equation, which simplifies further to the usual KdV equation provided 6 = 0. For c = 2, 
( 1 1 )  was solved explicitly by Dey (1986) using direct integration and later by Coffey 
(1990a) with the series method. If also 6 = 0 then ( 1 1 )  is the mKdV equation. 

Equation ( 1 1 )  with c = n ( n  any positive integer) and 6 = 0 (or a = 0), is often 
referred to as the gKdv equation. This equation describes an anharmonic lattice with 
a nearest-neighbour interaction force F - A"", where A is the extension or compression 
of the spring between two neighbouring masses. The gKdv equation was solved in an 
early paper by Zabusky (1967), where it was noted that the character and the number 
of solitary waves depends on whether n + 2 is even or odd. If n + 2 is odd there is only 
one type of solitary wave. If n + 2 is even one can have a compressive and rarefactive 
solitary wave. To arrive at these cases, one needs to consider solutions that approach 
a non-zero constant (background) at infinity. Well-posedness for equations of type 
( 1 1 )  (and beyond) has been studied and it is known (Weinstein 1986) that the solitary 
wave solutions of the gKdv equation are stable if n < 4 provided u ( x ,  0) E H 2 .  

We are interested in the case where c is positive but not necessarily integer and 
where at least a or 6 is non-zero. One may expect analytic rather than rational solutions. 
Dey's and Coffey's investigation showed that ( 1 1 )  admits two kink solutions and two 
anti-kink solutions ( (  1 f tanh) "' form). In passing, Weinstein (1986) also mentions 
the explicit form of the solitary wave solution for 6 = 0 and c integer. 

Travelling wave solutions of ( 1 1 )  are of the form u ( x ,  t )  = 4(,$), where , $=x -  ut. 
The ODE 

- U 4 6  + ( a  + w c ) 4 c 4 t  + d4,*, = 0 (12) 

can be integrated once to yield 

-v4 + (a+- 6 4') r#~'+'+ d& = C ,  
c + l  2 c + l  

where C, is an arbitrary constant. Using qb6 as an integrating factor, we get 

V a 6 d + -5 4 2 +  ( ( c  + l ) ( c  + 2) (2c + 1)(2c + 2) 

with Cz as arbitrary constant. 
For simplicity, we continue with C ,  = C2 = 0, which is equivalent to imposing the 

boundary conditions 4, 4', 4"+ 0 as ,$+ *CO. With reference to step c in the preceding 
section, this means that 

To investigate the degree of singularity of 4, we substitute 4 - t -p  into (14) and 
balance the most singular terms, yielding 

= 4. 

2 P = C  a # 0 , 6 = 0  

This suggests the transformation 
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so that (14) may be replaced by 

6(2/c’-2 46 -2 - - 0. 
U d -2 p c +  + 

2 ( (c  + l ) ( C  + 2) (2c + 1)(2c + 2) 

Finally, multiplication by c$2- (2 ’c )  results in 

-- U p+ U + i)i’+46;=0 
2 LC+ l ) ( c + 2 )  (2c+1) (2c+2)  2c 

which is a polynomial in 4 and its derivatives. 
To get an idea about the nature of the rational solutions of (18 ) ,  one performs a 

brief singularity analysis. Substituting 4 - r -q  into (18) and balancing the most singular 
terms reveals that 

4 - 5 - 2  a # 0, b = 0 ( 1 9 ~ )  

6 - 5-1 b # 0. (19b) 

We now substitute the expansion 

with g = exp( -K ( u ) r )  into (18). This yields, upon equating powers of g, the nonlinear 
recursion relation (with n b 4) 

n - 1  n - 1  I - 1  

Herein K ( u )  is still undetermined. However, note that one readily obtains K ( u ) ~ =  
c’u/ d by substituting the exponential 6 = g = exp( - K ( u ) t )  into (18) retaining only 
the lowest-degree terms. Alternatively, K ( u )  follows from (21) if we require that a,  
be arbitrary. Observe that if a, solves (21), as does a;a, for any a,. The knowledge 
of K ( u )  or a,  is not essential for solving the recursion relation (21). 

For a # 0, b = 0, we had (19a), and from the discussion in step h it follows that a, 
will be a polynomial of degree 6 = 1 in n. For b # 0, (196) indicates that 6 = 0, thus 
a, will be constant. Comprising both cases, we take a , = A , n + A , .  Proceeding as 
outlined in step i, we substitute a, into (21), and use the appropriate formula (7) for 
Sk, (k = 1 ,  . . . , 5 )  to replace the sums. This leads to a polynomial of degree 6 in n, in 
which we set the different coefficients equal to zero. Finally, one must solve the resulting 
set of seven coupled nonlinear algebraic equations for the unknowns A,, A , ,  U and 
K ( u ) .  After a rather tedious calculation, performed by hand or with MACSYMA, one 
finds the following results. 

Case 1: a#O, b=0: 

2 u ( c + 2 ) ( c +  1 )  c 2 u  
K 2  = - ( U  arbitrary). d 

A, = - Ao=O 
U 
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Case 2: b # 0: 

a(2c+ 1) 
A1=O A0 = 

b(c+2)  

a2(2c+ 1) K 2 = - = -  c2u a2c2(2c+ 1) 
U = -  

b( c + l ) ( c +  2)2 d bd(c+ l ) ( c + 2 ) ' '  

Still treating both cases simultaneously, 
5 

4= c (A,n+Ao)aog" 
n = l  

= [A,F,(aog) + AoFo(a0g)l 
r 

1 exp( - K [  - A) exp(-KS-A) 
(1 + exp( -K.$ - A ) )  = - [ A 1  (1 + exp( - K (  - A))' + A0 

where we used (9) and were a,= -exp(-A). The phase constant A follows from the 
initial conditions if they were specified. Finally, returning to the original variables we 
obtain the following. 

Case 1: a#O, b=0: 

u ( x ,  t )  = f$(x - u t )  = sech' (t &(x - u t )  + y ) ] I" 
with arbitrary velocity U. This formula is in Weinstein (1986). 

Case 2: b # 0: 

u ( x ,  t )  = f$(x- u t )  = { i;r++2i) [ 1 - tanh( f &(x - u t )  +$)]]'" 
with U = -a2(2c+ l ) / [b(c+ l ) ( ~ + 2 ) ~ ] .  

3.2. Some special cases 

It is easy to recover the well known one-soliton solution of the K d v  equation from 
(25). For instance, for a = 6, b = 0, c = d = 1 one gets 

u ( x ,  t )=2k2sech '  

with k = and A arbitrary constants. In the derivation of exact solutions one could 
have carried on with (14) with non-zero integration constants. Indeed, putting 4 = C + 6 
then allows one to recover the solution reported in Hereman et a1 (1985). This is left 
as an exercise to the reader. The derivation of the sech-solution (Hereman et a1 1986) 
of the mKdV equation, i.e. (11) with a cubic nonlinearity u2ux,  is discussed below. 
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For c = 1, (1 1) is the combined KdV-mKdV equation which has been widely used 
to model nonlinear phenomena in plasma and solid state physics and in quantum field 
theory (for references see, e.g., Coffey (1990b)). According to (26), the solution is 

U (x, t ) = (2) [ 1 - tanh (i e (x  + t ) + t) ] 
For c = 2 we retrieve the solution obtained by Dey (1986) and Coffey (1990a) from 

(26): 

U ( x, t ) = 2 e [ 1 - tanh (i e ( x + $ 1 )  + 4)] 
Coffey (1990a) also remarks that for c = 1 the term uu, in (11) can be removed by the 
substitution U = w - a/2b. This results in 

w,-(a2/4b)wX+ b ~ 2 W , + d W , , x = 0 .  (30) 

Next, by a trivial change of variables ( t ,  x)  + ( T, X )  with T = t ,  X = x + ( a2/4b)t ,  .the 
term in w, in the mKdV equation (30) can be removed. Without any further calculation 
the exact solution then readily follows from (25) with c = 2: 

u ( x ,  t )  = E r e c h i  $ [ x - ( v -$ t ) ]  +:}. 

This result is in complete agreement with (2.21) in Coffey (1990a). 
Verheest (1988) derived a gKdV equation 

U, + uu3ux + dux,, = 0 (32) 

for the propagation of ion-acoustic waves at critical densities in a multi-component 
plasma with different ionic charges and temperatures. By straightforward integration 
he discovered the solitary wave solution 

u ( x ,  t )  = ( F ) ” 3 s e c h 2 1 3  (5 $ (x - u t )  it) (33) 

with u arbitrary. This solution follows readily from (25) with b = 0, c = 3. It should be 
obvious now that the nonlinear term in (32) can be of any degree; there will always 
be analytic solutions similar to (33). 

Also in the context of plasma physics, Schamel (1973) derived the equation 

u, + ~ “ ~ u ,  + dux,, = 0 (34) 

describing ion-acoustic waves in a cold-ion plasma but where the electrons do not 
behave isothermally during their passage of the wave. A simple solitary wave solution 
obtained by Schamel (1973), - 

2 2 5 v 2  sech4(: J‘ (x  - v t )  +- u ( x ,  t )  =- 
64 d ”> 2 (35) 

readily follows from (25). The equation (34) apparently exhibits a stronger nonlinearity 
than the usual K d v  equation, corresponding to a smaller width and higher velocity of 
the wave. 

Of more interest is the solution of the equation due to Tagare and Chakrabarti (1974) 

u, + ( a  + bu”2)u”2u,  + duXxx = 0 (36) 
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where U refers again to the perturbed ion density in a plasma with non-isothermal 
electrons, but where a different type of scaling was used than in Schamel (1973). By 
direct integration, Tagare and Chakrabarti obtained 

cosh iL $ (x - u t )  (37) 
4a J75bu+16a2 

1 5 u  2 d  

This solution is valid for all U but 

16a2 
75b 

U = - -  

for which (37) would reduce to a constant. One may wonder if there exists a solitary 
wave solution for the critical velocity (38). The answer is yes, from (26) we have 

u ( x ,  t )  = < 25b [ 1 - tanh( 5 e (x +% r )  + (39) 

since c = $. This particular solution was clearly overlooked in Tagare and Chakrabarti 
(1974). 

This method could also be applied to, e.g., an equation of type (1 1) but with an 
extra fifth-order term. Solutions of that type of g K d v  equation were recently reported 
by Dai and Dai (1989). Our method is also applicable to the generalized Burgers-Huxley 
equation U, - m B u ,  - U,, = Pu(1-  u' ) (u '  - y ) ,  for which kink type solutions were 
obtained very recently by Wang et a1 (1990). 

4. Example 2: The KuramotoSivashinski equation 

The KS equation in 1 + 1 dimensions 

U ,  + uu, + au,, + bu,,,, = 0 (40) 

where a and b are real constants, has received a lot of attention, since it serves as a 
simple model for chaos (Hooper and Grimshaw 1988, Conte and Musette 1989, and 
the references therein). The KS equation occurs in the context of modelling chemical 
reaction-diffusion phenomena, flame front instability, propagation of long waves on 
a thin film or on the interface between two viscous fluids. 

The treatment of this example shows some similarity to that of the Kdv equation 
with an additional fifth-order term (Hunter and Vanden-Broeck 1983), U, + auu, + 
Pu,,, + u , ~ , ~ ~ ~  = 0, for which solitary waves were constructed in Hereman et al (1985, 
1986). 

We will restrict ourselves to the case a f 0 and b f 0, purposely leaving out the 
Burgers equation ( b  = 01, already solved with our method in Hereman er al (1985). 

First introducing a travelling frame of reference, 5 = x -- u t ;  subsequently replacing 
c#J(&) = u ( x ,  t )  by C + 6 and integrating gives 

( C  - u ) $ + i & 2 +  a i ,  + b6,,, = 0 

where the integration constant is set to zero right away. Note that we introduced the 
constant C before the integration; interchanging those two steps causes unnecessary 
complications. 
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For this equation, PainlevC analysis does not indicate the need of an extra nonlinear 
change of the dependent variable. As a matter of fact, (41) is a polynomial in 6 and 
its derivatives. However, we learn that I$ may have a cubic pole (6 - (-'). Cutting 
short the steps d and e and proceeding with step f of the algorithm, we solve the 
linearized equation, 

( C  - U)$+ a$,+ b6,,s = 0 

f ( K ,  U ) =  ( C  - U )  - U K  - b K 3 = 0 .  

(42) 

(43) 

Since U, K(u)  and also C are unknowns we cannot solve for K(u).  We rely on the 
physical idea behind the direct method to proceed. Indeed, we expect the final solution 
of the nonlinear equation (41) to be built up from real exponential solutions g =  
exp[ - (K(u)/s)(] ,  where s is (positive) integer. Denoting the roots of (43) by K l ,  K 2  
and K,,  these must be integer multiples of a common k, i.e. K ,  = s,k, K 2  = s2k and 
K 3  = s,k. This simple ansatz avoids having to work with a triple series for I$ in terms 
of the exponentials g, = exp(-K,(), i = 1,2 ,3 .  For more details on this crucial step see 
Hereman et a1 (1986). 

for 4 = exp( - K (  u ) t ) ,  and obtain 

Motivated by the above arguments, let us seek a solution of the form 
X 

I$ = c angn. 
n = ,  

Substitution of this expansion into (41) yields the recursion relation 

(44) 

1 n - l  n 
S 2 I = ,  

(45) [ (C - v) -- K a  - (? ) ' bK3]  a, +- ala,-l = 0 n 2 2  

with a, arbitrary if s = 1 and a ,  = 0 if s # 1. From (43) we can isolate either C - U  or 
bK3 to simplify (45). In order to avoid cubic terms in K we opted for the latter, and 
replace (45) by 

Next, we calculate the degree 6 of a, in n. For 6 may have a cubic pole, 6 = 2. 
Alternatively, one could quickly substitute a, - n' into (45) and balance the highest- 
degree terms in n ;  the catch is that every sum increases the degree of n by one. Doing 
so, from 6 + 3 = 26 + 1 it follows that 6 = 2. Substituting 

a, = A 2 n 2 + A , n + A ,  (47) 
into (461, then applying the formulae for So through S,, as given in (7), will eventually 
give rise to a polynomial of degree 5 in n. The six coefficients of this polynomial are 
set equal to zero, yielding 

Ao[2( C - U )  -A , ]  = O  (48 a ) 

60A,s(C -u)-A:s+ lOAoA2s - ~ A : S - ~ O A ~ A ~ S + ~ O A & - ~ O U A O K  = O  (486) 
12A2s( C - U )  - AIA2s - 6AoA2s + 6AoAl s - 12aAI K = 0 

12A,( C - U )  - 4AoA2s3 - A:s3 + 12aA2Ks2- 12aAOK = 0 

A,[ 12( C - U )  - A2s3 - 12aK] = 0 

A2[60( C - U )  - A2s3 -60aKI = 0. 
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This nonlinear system for the unknowns A,,  A , ,  A 2 ,  K,  C - v and the integers s is 
readily solved. The condition (43) determines b as soon as K and C - v are found. 
The solution as we obtained it with MACSYMA, is summarized in table 1. 

What remains to be done is to write 6 in its closed form. Using (9) and (lo), we have 
00 

6 = c (A2n2+Ao)(aog)n 
n = l  

= AzFz(a0g) + AoFo(aog) 

If we select the constant ao= -exp(-A) to be negative and if we absorb it into the 
exponential g as an arbitrary phase A, then 

This form still covers all the cases for s. We now return to the original variables 
4 = C + 4 and list the remaining cases. 

Case 1 :  s = l :  

where K =-. 

Case 2: s = 2 , 3  or -5: 

+=U-? lSOk[ tanh3 (":'A) - -3  tanh (":+A)] - 

with k =-. 
In both cases the velocity v is completely free, confirming that the KS equation is 

invariant under the Galilean transformation (Conte and Musette 1989). Of course, 
u ( x ,  t )  is obtained by replacing 5 by x - ut in (51) and (52). 

Hooper and Grimshaw (1988) report the solution (51), as shown in figure 1 (for 
v = A = 0, K = 2 and a =$) but were clearly not aware of the solution (52) shown in 

Table 1. Solutions of the algebraic equations for the K S  case. 

Unknowns s = l  s = 2  s = 3  s = - 5  

A0 60aKI19 30aKI19 20aK/19 -12aK/19 
A,  0 0 0 0 
A2 660aKl19 -30aKl19 -20aKl19 12aK/19 
c-0 30aKl19 15aKI19 10aK/19 -6aK/19 
b l l a / ( 1 9 K 2 )  -4a/(19K2) -9a/(19K2) -25a/(19K2) 
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Figure 1. The shock profile solution 4 = 
11 tanh3( t ) -9  tanh(f)  of the KS equation. 
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Figure 2. The kink-type solution 6 = 3 tanh(f)  - 
tanh3(f) of the KS equation. 

figure 2 ( U  = A = 0, a = # and k = 2 ) .  Although both have the same type of formula 
they differ drastically in shape. The exact solution (51) assumes the familiar (kink-type) 
shock profile, similar to the one for the Burgers equation (40) with b = 0 whereas (52 )  
is a special shock profile. Both kink-type solutions can also be obtained from PainlevC- 
Backlund equations (Conte and Musette 1989). Singular kink-type solutions could be 
obtained by taking a,, > 0. Allowing complex values for K ,  to be precise purely imaginary 
values, would lead to periodic but singular solutions (built up with tan and tan3). 

It is worthwhile to return to the recursion relation (45). For the first case ( s  = l),  
the roots of (43) are K ,  = - K 2  = and K 3  = 0, and C = U + 30aK,/  19. Hence, 
the coefficient of a, in (45) factors into 

(53) 
This implies that a ,  can be taken arbitrary and different from zero. 
For the second case (s = 2 , 3 ,  - 5 ) ,  the roots of (43) are K1 = 2k, K 2  = 3k, K 3  = -5k, 

with k = = w. Obviously, a ,  = 0, and the coefficient of a, in (45), i.e. 

- ( a K  / 19)( n - 1) ( 1 1 n2 + 11 n + 30). 

30ak/19  - a n 2  - bn3k3 

( a k / 1 9 ) ( n  - 2 ) ( n  - 3 ) ( n  + 5 ) .  

(54) 

( 5 5 )  
This implies that a, and a3 can be taken arbitrary. In retrospect, should we have 
required that (54) was zero for n = 2 and n = 3 we would have found k = d- 
and C - U = 30ak/19  right away. Other selections for the values of n lead to the same 
result after relabelling the a,. This less rigorous procedure for determining the 
wavenumber k and wave velocity U was used in Hereman et a1 (1985, 1986) to solve 
the Kdv equation with an extra fifth-order dispersive term. The present modifications 
of the method make this step much more solid and applicable without hindsight. 

factors into 

5. Example 3: The generalized Fisher equation 

5.1. General treatment 

The Fisher equation, 

U, - U,, - U ( 1 - U ) = 0 
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plays an important role in biophysics, where it describes the propagation of mutant 
genes. This nonlinear diffusion equation also describes the spread of flames and 
explosions, the evolution of a neutron population in a nuclear reactor and the branching 
Brownian motion process. The Fisher equation was solved by Ablowitz and Zeppetella 
(1979) with a series solution method similar to the one presented in this paper. 

Obviously, one may wonder what happens if the quadratic nonlinearity in the 
Fisher equation were replaced by a cubic or higher-degree one. Using direct integration, 
a solitary wave solution of the g F  equation, 

(57) 

with c a real constant, was found by Wang (1988). 
Equation (57) reduces to the real Newell-Whitehead ( N W )  equation for c = 2, which 

itself was recently solved by Cariello and Tabor (1989). The solution of the latter may 
also be found in Hereman (1990a) on the FitzHugh-Nagumo ( F H N )  equation. By 
formally setting a = -1 in the celebrated FHN, U, - U,, + U( 1 - U)( a - U )  = 0, the real 
NW equation is found. Their solutions are related in a similar way. 

We apply the direct method to (57), where c does not have to be integer. We expect 
(57) to have analytic rather than rational solutions expressible in real exponentials. 

Considering only travelling wave solutions that will vanish at infinity, we set 
u ( x ,  t )  = 4 ( [ )  = 4 = $([), where [ = x - ut. Testing the singular behaviour of the sol- 
ution ( 4  - [-") of the resulting ODE gives p = 2/ c, suggesting the nonlinear transforma- 
tion 4 = 6'". Hence, after factoring out ( 2 / ~ ) 6 ( * ' ~ - ' '  we obtain 

U, - U,, - U ( 1 - U ) = 0 

which is completely of polynomial type in 6 and its derivatives. Singular analysis of 
this equation indicates that 6 - [-', and for selected values of c the equation passes 
the PainlevC test. Note that the transformation 4 = 6"' would have worked equally 
well. The nonlinear term in the resulting ODE in 6 would have been cubic rather than 
of fourth degree. 

The above equation has no linear terms, hence we consider the lowest-degree terms. 
Upon substitution of 4 = g = exp( - K [ )  into the quadratic terms of ( 5 8 ) ,  we find 

2 C 
( 5 9 )  ~ ( K , U ) = - K ~ - ~ K + - = O .  C 2 

We solve (59) for U, substitute that into (58) together with the expansion 6 
X 6 = angn. 

n = 1  

It turns out that an expansion in g = exp(-K[) itself works since (59) is quadratic, 
whereas in the preceding examplef(K, U )  in (43) was cubic. This yields, upon equating 
the different powers of g, the recursion relation (with n 3 4 )  

'il [ K '1' - (F + f) I + (s - 1) K ' 1 (  n - 1 )  + - a,-,al 
I =  1 2 '1 

c n - 1  1-1 m-1 

2 1=3 m = 2  j = 1  
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It is easy to determine that a, = A. = constant. Using the formulae for sums of the 

Ao=*l (62) 

powers of the first n - 1 integers, we have after a rather tedious calculation 

and using K = K ,  in (59) yields 

c + 4  
U=- 

\" 

We restrict ourselves to waves travelling towards the right. The waves travelling to 

To obtain the final solution we perform the following steps: 
the left are obtained similarly with negative values for both K and t'. 

az 

& =  c Ao(a0g)" 
n = l  

= *Fo(aog) 

1 - aog 

exp( - K( - A) 
1 + exp( - K( - A) 

aog =*- 

= T  

where we used (9) and (62) and where a, = -exp(-A). Finally, returning to the original 
variables, 

This solution was obtained by Wang (1988) with a completely different method 
involving a clever trick. For c = 1 it reduces to the well known solution of the Fisher 
equation (56) (Ablowitz and Zeppetella 1979, Wang 1988, Hereman and Angenent 1989) 

For c = 2 we obtain 

This result is a special case of that obtained from PainlevC analysis by Cariello and 
Tabor (1989) and Hereman (1990a). 

5.2. Special case 

To conclude let us briefly come back to the original Fisher equation (56) 

(69) U ,  - U,, - U ( 1 - U j = 0 
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for which the linear part admits the dispersion relation 

f( K ,  U )  = K ’ -  U K  + 1 = 0. 

Seeking a solution of 

4&+ U&+ 4 - 92 = 0 

for 4 as in (60) but with g =exp[-(K/s)[], we readily obtain the recursion relation 
n - 1  ( 5  - 1) (: - 3 + 1) a, - 1 alan - I  = 0. 
/ =  1 

It is clear that k = K / s  # K ,  # K 2  implies a ,  = 0. Asking that a ,  # 0 and a3 f 0 requires 
that s = 2  and s = 3 .  Hence, since K l = 2 k  and K2=3k both solve (70) one easily 
calculates k = I/& and v = 5 /& .  The coefficient of a, in the recursion relation, i.e. 

k 2 n 2 - v k n + 1  (73) 

clearly factors into A( n - 2)( n - 3). It is worthwhile mentioning that (70) only passes 
the PainlevC test provided u 2  = F ,  for which (70) can be factored right away. 

The above results could have been obtained by solving (72) with a solution of the 
form a, = A , n  + A o ,  in which case one would find that a, = ( a , ) ” (  n - 1). The observant 
reader may wonder where this peculiar case with the special values for K ,  and K 2  is 
hidden in the above treatment of the gF equation. To see this, take K ,  and U as in (63) 
and (64), and calculate the second solution of (59). This gives K 2  c(c+2)/(2-. 
Observe that K ,  = p l k  and K 2  = p2k with p1 = 2, p 2  = c + 2 and K = c/(2-. The 
factor p2 is an integer iff c is an integer. Setting c =  1 gives p l = 2 ,  p z = 3 ,  and K = 
1/(2-. One thus retrieves the parameters k, K 1 ,  K ,  and U for the Fisher equation 
(56). The extra factor 2 now appearing in the denominators is due to the fact that 9 = 42, 

6. Discussion and conclusion 

From the three examples, it should be clear that the direct method is now extended 
to cover analytical rather than rational expressions in real exponentials. These real 
exponentials satisfy the linearized equation or-if that is not present-the lowest-degree 
terms of the nonlinear equation. Although there may exist exponentials with different 
exponents, in most cases it suffices to consider one ‘basic’ exponential form. All the 
exponentials are powers of this common one. Physically, this means that we are working 
with commensurate frequencies. 

The most crucial steps in the algorithm are now completely systematic. The needed 
nonlinear transformations follows from singular analysis ( PainlevC analysis). The 
recursion relations are obtained in the desired form by using Cauchy’s formula for 
products of series. The recursion relations can be solved for a polynomial-type solution 
by hand or with any symbolic program. The summation of the series expansions in 
closed form is now based on general, but simple formulae. All these steps are straightfor- 
ward and do no longer need intuition, experience or hindsight. 

In the near future we hope to treat equations (Hereman and Takaoka 1990), which 
do not have solutions in terms of hyperbolic functions. We also intend to look at the 
examples studied in this paper from the point of view of phase plane analysis. This 
will require a careful classification of the singular points of the linearized first-order 
systems, followed by an investigation of the dimension and stability of the manifolds 
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through these singular (or critical) points. The theory for this goes back to theorems 
by Liapunov and Poincari (Arnold 1983, ch 5, p 187). The final goal is then to find 
the closed-form representation corresponding to the homoclinic and heteroclinic orbits 
through the equilibrium points. Homoclinic trajectories in phase space will lead to 
pulse-type solutions such as sechn ( n  integer); heteroclinic orbits correspond to kink- 
type solutions such as 1 -tanh. Jeffrey and Kakutani (1972) treated a combined 
Kdv-Burgers equation along those lines. Recently, Coffey (1990b) carried out a phase 
plane analysis for (1 1) with c = 1 and c = 2, in a first attempt to justify the direct 
algebraic method as described and applied in his earlier paper (Coffey 1990a). Angenent 
(1988) calculated the speed of meromorphic travelling wave solutions for U, - U,, =f(  U), 
where f(u) is of polynomial type with real coefficients and simple zero at U = 0 and 
U = 1, and for whichf(1) < O < f ( O )  holds. These conditions are satisfied for the Fisher 
equation (56). Phase plane analysis could lead to a better understanding of the 
applicability of the method to other equations. Also the connection between this method 
and its counterpart in the complex plane deserves further investigation. In particular, 
the use of Mittag-Lefler’s theorem for the determination of the form of the solitary 
waves (Takaoka 1989). 

Finally, we should mention that the method is readily applicable to (2+1)-  
dimensional equations such as the Kadomtsev-Petviashvili equation (Kadomtsev and 
Petviashvili 1970). Furthermore, the method allows one to solve coupled systems 
(Hereman 1988), discrete equations such as the Toda equation (Dash and Panigraphi 
1990) and integral equations (Coffey 1990a). N solitary wave solutions and implicit 
solutions can be obtained with a generalization of this method (see, e.g., Hereman 
et a1 1986, Hereman 1988, 1990a, c and Banerjee et a1 1990). The physical idea and 
the mathematical steps are pretty much the same but the calculations are much more 
involved. 
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